Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12591, 2023.
Article in English | Scopus | ID: covidwho-20244440

ABSTRACT

As cruise ships call at many ports and passengers come from all over the world, it is very easy to carry viruses on cruise ships. Under the control of the epidemic situation on board, the solid waste generated by them should be scientifically treated to prevent the spread of infectious diseases such as COVID-19 pneumonia. Therefore, Reasonable selection of waste disposal ports and formulation of unloading plans are directly related to the resumption of cruise operations. This study considers the cost and risk of waste disposal, uses robust optimization to deal with waste volume, increases the scenarios of port service interruption due to epidemics and other reasons, and proposes a variety of emergency strategies. Finally, the relevant strategies are selected according to the decision-maker's preference for cost and risk;By solving the relevant examples, the optimal choice of the cruise ship waste disposal port under the epidemic situation is given, which verifies the validity and feasibility of the model. The research helps to improve the management of cruise waste during the post-epidemic period, and has practical value and guiding significance for the normal operation and development of the global cruise market. © 2023 SPIE.

2.
ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023 ; : 1204-1207, 2023.
Article in English | Scopus | ID: covidwho-20239230

ABSTRACT

Timeline summarization (TLS) is a challenging research task that requires researchers to distill extensive and intricate temporal data into a concise and easily comprehensible representation. This paper proposes a novel approach to timeline summarization using Meaning Representations (AMRs), a graphical representation of the text where the nodes are semantic concepts and the edges denote relationships between concepts. With AMR, sentences with different wordings, but similar semantics, have similar representations. To make use of this feature for timeline summarization, a two-step sentence selection method that leverages features extracted from both AMRs and the text is proposed. First, AMRs are generated for each sentence. Sentences are then filtered out by removing those with no named-entities and keeping the ones with the highest number of named-entities. In the next step, sentences to appear in the timeline are selected based on two scores: Inverse Document Frequency (IDF) of AMR nodes combined with the score obtained by applying a keyword extraction method to the text. Our experimental results on the TLS-Covid19 test collection demonstrate the potential of the proposed approach. © 2023 ACM.

3.
Journal of Geophysical Research Atmospheres ; 128(11), 2023.
Article in English | ProQuest Central | ID: covidwho-20239181

ABSTRACT

The COVID‐19 pandemic resulted in a widespread lockdown during the spring of 2020. Measurements collected on a light rail system in the Salt Lake Valley (SLV), combined with observations from the Utah Urban Carbon Dioxide Network observed a notable decrease in urban CO2 concentrations during the spring of 2020 relative to previous years. These decreases coincided with a ∼30% reduction in average traffic volume. CO2 measurements across the SLV were used within a Bayesian inverse model to spatially allocate anthropogenic emission reductions for the first COVID‐19 lockdown. The inverse model was first used to constrain anthropogenic emissions for the previous year (2019) to provide the best possible estimate of emissions for 2020, before accounting for emission reductions observed during the COVID‐19 lockdown. The posterior emissions for 2019 were then used as the prior emission estimate for the 2020 COVID‐19 lockdown analysis. Results from the inverse analysis suggest that the SLV observed a 20% decrease in afternoon CO2 emissions from March to April 2020 (−90.5 tC hr−1). The largest reductions in CO2 emissions were centered over the northern part of the valley (downtown Salt Lake City), near major roadways, and potentially at industrial point sources. These results demonstrate that CO2 monitoring networks can track reductions in CO2 emissions even in medium‐sized cities like Salt Lake City.Alternate :Plain Language SummaryHigh‐density measurements of CO2 were combined with a statistical model to estimate emission reductions across Salt Lake City during the COVID‐19 lockdown. Reduced traffic throughout the COVID‐19 lockdown was likely the primary driver behind lower CO2 emissions in Salt Lake City. There was also evidence that industrial‐based emission sources may of had an observable decrease in CO2 emissions during the lockdown. Finally, this analysis suggests that high‐density CO2 monitoring networks could be used to track progress toward decarbonization in the future.

4.
Drug Repurposing for Emerging Infectious Diseases and Cancer ; : 37-45, 2023.
Article in English | Scopus | ID: covidwho-20236385

ABSTRACT

Pharmacovigilance involves evaluation of adverse effects of drugs in the interest of patient safety. Large-scale application of pharmacovigilance generates big datasets that are mined to identify previously unknown drug–event combinations, and, as an extension, may help in identifying new indications for old drugs. The therapeutic potential of a drug using pharmacovigilance-based drug repurposing can be assessed in one of the four ways—serendipity, mechanistic profiling, signature matching, and inverse signaling. Serendipity is the phenomenon of discovery of some valuable information for an already known drug, by chance, like minoxidil. Mechanistic profiling proposed the use of sulfonylureas for diabetes mellitus, based on the observation of their hypoglycemic effect. Signature matching is puzzling out new indications of drugs based on similarity of characteristics in a network of other drugs which are already approved for any condition. Inverse signaling approach takes cues from data mining approaches, applied to pharmacovigilance databases. Currently, this approach is being tried to evaluate existing compounds for Raynaud's phenomenon, COVID-19, Alzheimer' disease, etc. In this chapter, we discuss these pharmacovigilance-based methods as they have immense translational potential for drug repurposing. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.

5.
World Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty - Selected Papers from World Environmental and Water Resources Congress 2023 ; : 881-890, 2023.
Article in English | Scopus | ID: covidwho-20233168

ABSTRACT

Water distribution systems (WDSs) deliver clean, safe drinking water to consumers, providing an essential service to constituents. WDSs are increasingly at risk of contamination due to aging infrastructure and intentional acts that are possible through cyber-physical vulnerabilities. Identifying the source of a contamination event is challenging due to limited system-wide water quality monitoring and non-uniqueness present in solving inverse problems to identify source characteristics. In addition, changes in the expected demand patterns that are caused by, for example, social distancing during a pandemic, adoption of water conservation behaviors, or use of decentralized water sources can change the anticipated propagation of contaminant plumes in a network. This research develops a computational framework to characterize contamination sources using machine learning (ML) techniques and simulate water demands and human exposure to a contaminant using agent-based modeling (ABM). An ABM framework is developed to simulate demand changes during the COVID-19 pandemic. The ABM simulates population movement dynamics, transmission of COVID-19 within a community, decisions to social distance, and changes in demands that occur due to social distancing decisions. The ABM is coupled with a hydraulic simulation model, which calculates flows in the network to simulate the movement of a contaminant plume in the network for several contamination event scenarios. ML algorithms are applied to determine the location of source nodes. Research results demonstrate that ML using random forests can identify source nodes based on inline and mobile sensor data. Sensitivity analysis is conducted to explore the number of mobile sensors that are needed to accurately identify the source node. Rapidly identifying contamination source nodes can increase the speed of response to a contamination event, reducing the impact to the community and increasing the resiliency of WDSs during periods of changing demands. © World Environmental and Water Resources Congress 2023.All rights reserved

6.
Axioms ; 12(5), 2023.
Article in English | Scopus | ID: covidwho-20232198

ABSTRACT

In this paper, we emphasize a new one-parameter distribution with support as (Formula presented.). It is constructed from the inverse method applied to an understudied one-parameter unit distribution, the unit Teissier distribution. Some properties are investigated, such as the mode, quantiles, stochastic dominance, heavy-tailed nature, moments, etc. Among the strengths of the distribution are the following: (i) the closed-form expressions and flexibility of the main functions, and in particular, the probability density function is unimodal and the hazard rate function is increasing or unimodal;(ii) the manageability of the moments;and, more importantly, (iii) it provides a real alternative to the famous Pareto distribution, also with support as (Formula presented.). Indeed, the proposed distribution has different functionalities but also benefits from the heavy-right-tailed nature, which is demanded in many applied fields (finance, the actuarial field, quality control, medicine, etc.). Furthermore, it can be used quite efficiently in a statistical setting. To support this claim, the maximum likelihood, Anderson–Darling, right-tailed Anderson–Darling, left-tailed Anderson–Darling, Cramér–Von Mises, least squares, weighted least-squares, maximum product of spacing, minimum spacing absolute distance, and minimum spacing absolute-log distance estimation methods are examined to estimate the unknown unique parameter. A Monte Carlo simulation is used to compare the performance of the obtained estimates. Additionally, the Bayesian estimation method using an informative gamma prior distribution under the squared error loss function is discussed. Data on the COVID mortality rate and the timing of pain relief after receiving an analgesic are considered to illustrate the applicability of the proposed distribution. Favorable results are highlighted, supporting the importance of the findings. © 2023 by the authors.

7.
J Appl Stat ; 50(8): 1665-1685, 2023.
Article in English | MEDLINE | ID: covidwho-20236609

ABSTRACT

Among the models applied to analyze survival data, a standout is the inverse Gaussian distribution, which belongs to the class of models to analyze positive asymmetric data. However, the variance of this distribution depends on two parameters, which prevents establishing a functional relation with a linear predictor when the assumption of constant variance does not hold. In this context, the aim of this paper is to re-parameterize the inverse Gaussian distribution to enable establishing an association between a linear predictor and the variance. We propose deviance residuals to verify the model assumptions. Some simulations indicate that the distribution of these residuals approaches the standard normal distribution and the mean squared errors of the estimators are small for large samples. Further, we fit the new model to hospitalization times of COVID-19 patients in Piracicaba (Brazil) which indicates that men spend more time hospitalized than women, and this pattern is more pronounced for individuals older than 60 years. The re-parameterized inverse Gaussian model proved to be a good alternative to analyze censored data with non-constant variance.

8.
Comput Methods Programs Biomed ; 236: 107526, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20231106

ABSTRACT

BACKGROUND: We provide a compartmental model for the transmission of some contagious illnesses in a population. The model is based on partial differential equations, and takes into account seven sub-populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quarantined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze an efficient computer method which resembles the dynamical properties of the epidemiological model. MATERIALS AND METHODS: A non-local approach is utilized for finding approximate solutions for the mathematical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable circumstances, the matrices representing the methodology are M-matrices. RESULTS: Analytically, the local asymptotic stability of the constant solutions is investigated and the next generation matrix technique is employed to calculate the reproduction number. Computationally, the dynamical consistency of the method and the numerical efficiency are investigated rigorously. The method is thoroughly examined for its convergence, stability, and consistency. CONCLUSIONS: The theoretical analysis of the method shows that it is able to maintain the positivity of its solutions and identify equilibria. The method's local asymptotic stability properties are similar to those of the continuous system. The analysis concludes that the numerical model is convergent, stable and consistent, with linear order of convergence in the temporal domain and quadratic order of convergence in the spatial variables. A computer implementation is used to confirm the mathematical properties, and it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their local asymptotic stability.


Subject(s)
Models, Theoretical , Quarantine , Humans , Computer Simulation , Vaccination
9.
Alexandria Engineering Journal ; 74:725-735, 2023.
Article in English | ScienceDirect | ID: covidwho-2327795

ABSTRACT

Real-world applications process enormous amounts of data, especially in the area of large-dimension features. This work aims to present new classes of functions based on SM*-open sets that are a modification of simply open sets;namely, SM*-continuous, SM*-irresolute, proper continuous, SM*-open, SM*-closed, strongly SM*-irresolute, Pre SM*-irresolute, Pre SM*-open, super SM*-open and completely irresolute. The idea of fuzzy soft multifunction between fuzzy soft topological spaces, developed by Metin, is frequently used. Our current research project uses our suggested idea to introduce coronavirus application and infer the most important causal symptoms of coronavirus patients. Furthermore, we created an algorithm to demonstrate the applicability of our proposed technique based on the presented concept. Additionally, the results obtained using MATLAB programming. Finally, realistic WHO-compliant results were achieved for the most serious symptoms of coronavirus patients, as well as a suggested strategy that is competitive. Therefore, decision-making in the future needs to consider our suggestion. In order to promote the long-term wellbeing of both nature and humanity. Our proposed approach is reasonable and effective. The results showed that the methodology we used was reliable as it was consistent with World Health Organization publications.

10.
5th International Conference on Emerging Smart Computing and Informatics, ESCI 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2321508

ABSTRACT

In 2019, the Novel Coronavirus Disease (COVID-19) was categorized as a pandemic. This disease can be transmitted via droplets on items or surfaces within several hours. Therefore, the researchers aimed to develop a wirelessly controlled robot arm and platform capable of picking up objects detected via object detection. Robot arm movements are done via the use of inverse kinematics. Meanwhile, a custom object detection model that can detect objects of interest will be trained and implemented in this project. To achieve this, the researchers utilize various open-source libraries, microcontrollers, and readily available materials to construct and program the entire system. At the end of this research, the prototype could reliably detect objects of interest, along with a grab-and-dispose success rate of 88%. Instruction data can be properly sent and received, and dual web cam image transfer reaches up to 1.72 frames per second. © 2023 IEEE.

11.
Stat Sci ; 37(2): 251-265, 2022 May.
Article in English | MEDLINE | ID: covidwho-2327006

ABSTRACT

COVID-19 has challenged health systems to learn how to learn. This paper describes the context, methods and challenges for learning to improve COVID-19 care at one academic health center. Challenges to learning include: (1) choosing a right clinical target; (2) designing methods for accurate predictions by borrowing strength from prior patients' experiences; (3) communicating the methodology to clinicians so they understand and trust it; (4) communicating the predictions to the patient at the moment of clinical decision; and (5) continuously evaluating and revising the methods so they adapt to changing patients and clinical demands. To illustrate these challenges, this paper contrasts two statistical modeling approaches - prospective longitudinal models in common use and retrospective analogues complementary in the COVID-19 context - for predicting future biomarker trajectories and major clinical events. The methods are applied to and validated on a cohort of 1,678 patients who were hospitalized with COVID-19 during the early months of the pandemic. We emphasize graphical tools to promote physician learning and inform clinical decision making.

12.
Suranaree Journal of Science and Technology ; 30(2), 2023.
Article in English | Scopus | ID: covidwho-2319454

ABSTRACT

Towards the end of 2019, a novel contagious virus (COVID-19) came out of Wuhan, China and turned into a disastrous pandemic. Many countries were locked down;completely or partially. The ongoing pandemic not only affected our economies and routine life, but also the environment. This study was aimed to compare the air quality of the Indian subcontinent prior to and during the COVID-19 pandemic. In this regard, air quality parameters (ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, PM2.5 and PM10) and meteorological parameters (wind speed and relative humidity) were analysed. The data was obtained from 229 monitoring stations in India and satellitebased Aerosol Absorption Index (AAI) during the springs of 2019 and 2020. The result indicated a significant decline in the concentration mean, six air pollutants (i.e., PM2.5, PM10, N2, SO2, O3 and CO) decreased by 36.27, 42.96, 44.62, 28.88, 18.35 and 20.51 %, respectively during April 2020 due to less to no industrial activities and vehicular emissions. The spatial variation of each parameter was simulated using the Inverse Distance Weighted (IDW) interpolation method. An Analytical Hierarchy Process (AHP) model was applied to generate the overall air quality severity zonation map of the country. The zonation map indicated that by adopting cleaner fuel and restriction on biomass burning in the rural and urban sectors can improve the ambient air quality © 2023, Suranaree Journal of Science and Technology.All Rights Reserved.

13.
JMIR Form Res ; 7: e42930, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2317910

ABSTRACT

BACKGROUND: The outbreak of the COVID-19 pandemic had a major effect on the consumption of health care services. Changes in the use of routine diagnostic exams, increased incidences of postacute COVID-19 syndrome (PCS), and other pandemic-related factors may have influenced detected clinical conditions. OBJECTIVE: This study aimed to analyze the impact of COVID-19 on the use of outpatient medical imaging services and clinical findings therein, specifically focusing on the time period after the launch of the Israeli COVID-19 vaccination campaign. In addition, the study tested whether the observed gains in abnormal findings may be linked to PCS or COVID-19 vaccination. METHODS: Our data set included 572,480 ambulatory medical imaging patients in a national health organization from January 1, 2019, to August 31, 2021. We compared different measures of medical imaging utilization and clinical findings therein before and after the surge of the pandemic to identify significant changes. We also inspected the changes in the rate of abnormal findings during the pandemic after adjusting for changes in medical imaging utilization. Finally, for imaging classes that showed increased rates of abnormal findings, we measured the causal associations between SARS-CoV-2 infection, COVID-19-related hospitalization (indicative of COVID-19 complications), and COVID-19 vaccination and future risk for abnormal findings. To adjust for a multitude of confounding factors, we used causal inference methodologies. RESULTS: After the initial drop in the utilization of routine medical imaging due to the first COVID-19 wave, the number of these exams has increased but with lower proportions of older patients, patients with comorbidities, women, and vaccine-hesitant patients. Furthermore, we observed significant gains in the rate of abnormal findings, specifically in musculoskeletal magnetic resonance (MR-MSK) and brain computed tomography (CT-brain) exams. These results also persisted after adjusting for the changes in medical imaging utilization. Demonstrated causal associations included the following: SARS-CoV-2 infection increasing the risk for an abnormal finding in a CT-brain exam (odds ratio [OR] 1.4, 95% CI 1.1-1.7) and COVID-19-related hospitalization increasing the risk for abnormal findings in an MR-MSK exam (OR 3.1, 95% CI 1.9-5.3). CONCLUSIONS: COVID-19 impacted the use of ambulatory imaging exams, with greater avoidance among patients at higher risk for COVID-19 complications: older patients, patients with comorbidities, and nonvaccinated patients. Causal analysis results imply that PCS may have contributed to the observed gains in abnormal findings in MR-MSK and CT-brain exams.

14.
Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences ; 479(2272), 2023.
Article in English | Web of Science | ID: covidwho-2308175

ABSTRACT

The infectiousness of infected individuals is known to depend on the time since the individual was infected, called the age of infection. Here, we study the parameter identifiability of the Kermack-McKendrick model with age of infection which takes into account this dependency. By considering a single cohort of individuals, we show that the daily reproduction number can be obtained by solving a Volterra integral equation that depends on the flow of newly infected individuals. We test the consistency of the method by generating data from deterministic and stochastic numerical simulations. Finally, we apply our method to a dataset from SARS-CoV-1 with detailed information on a single cluster of patients. We stress the necessity of taking into account the initial data in the analysis to ensure the identifiability of the problem.

15.
Mathematics ; 11(8):1812, 2023.
Article in English | ProQuest Central | ID: covidwho-2305886

ABSTRACT

Model checking methods based on non-parametric estimation are widely used because of their tractable limiting null distributions and being sensitive to high-frequency oscillation alternative models. However, this kind of test suffers from the curse of dimensionality, resulting in slow convergence, especially for functional data with infinite dimensional features. In this paper, we propose an adaptive-to-model test for a parametric functional single-index model by using the orthogonality of residual and its conditional expectation. The test achieves model adaptation by sufficient dimension reduction which utilizes functional sliced inverse regression. This test procedure can be easily extended to other non-parametric test methods. Under certain conditions, we prove the asymptotic properties of the test statistic under the null hypothesis, fixed alternative hypothesis and local alternative hypothesis. Simulations show that our test has better performance than the method that does not use functional sufficient dimension reduction. An analysis of COVID-19 data verifies our conclusion.

16.
Applied Sciences ; 13(8):4973, 2023.
Article in English | ProQuest Central | ID: covidwho-2305272

ABSTRACT

Featured ApplicationRadiation thermometry of real objects under real conditions.Despite great technical capabilities, the theory of non-contact temperature measurement is usually not fully applicable to the use of measuring instruments in practice. While black body calibrations and black body radiation thermometry (BBRT) are in practice well established and easy to accomplish, this calibration protocol is never fully applicable to measurements of real objects under real conditions. Currently, the best approximation to real-world radiation thermometry is grey body radiation thermometry (GBRT), which is supported by most measuring instruments to date. Nevertheless, the metrological requirements necessitate traceability;therefore, real body radiation thermometry (RBRT) method is required for temperature measurements of real bodies. This article documents the current state of temperature calculation algorithms for radiation thermometers and the creation of a traceable model for radiation thermometry of real bodies that uses an inverse model of the system of measurement to compensate for the loss of data caused by spectral integration, which occurs when thermal radiation is absorbed on the active surface of the sensor. To solve this problem, a hybrid model is proposed in which the spectral input parameters are converted to scalar inputs of a traditional scalar inverse model for GBRT. The method for calculating effective parameters, which corresponds to a system of measurement, is proposed and verified with the theoretical simulation model of non-contact thermometry. The sum of effective instrumental parameters is presented for different temperatures to show that the rule of GBRT, according to which the sum of instrumental emissivity and instrumental reflectivity is equal to 1, does not apply to RBRT. Using the derived models of radiation thermometry, the uncertainty of radiation thermometry due to the uncertainty of spectral emissivity was analysed by simulated worst-case measurements through temperature ranges of various radiation thermometers. This newly developed model for RBRT with known uncertainty of measurement enables traceable measurements using radiation thermometry under any conditions.

17.
Journal of Inverse and Ill-Posed Problems ; 2023.
Article in English | Scopus | ID: covidwho-2298210

ABSTRACT

The problem of identification of unknown epidemiological parameters (contagiosity, the initial number of infected individuals, probability of being tested) of an agent-based model of COVID-19 spread in Novosibirsk region is solved and analyzed. The first stage of modeling involves data analysis based on the machine learning approach that allows one to determine correlated datasets of performed PCR tests and number of daily diagnoses and detect some features (seasonality, stationarity, data correlation) to be used for COVID-19 spread modeling. At the second stage, the unknown model parameters that depend on the date of introducing of containment measures are calibrated with the usage of additional measurements such as the number of daily diagnosed and tested people using PCR, their daily mortality rate and other statistical information about the disease. The calibration is based on minimization of the misfit function for daily diagnosed data. The OPTUNA optimization framework with tree-structured Parzen estimator and covariance matrix adaptation evolution strategy is used to minimize the misfit function. Due to ill-posedness of identification problem, the identifiability analysis is carried out to construct the regularization algorithm. At the third stage, the identified parameters of COVID-19 for Novosibirsk region and different scenarios of COVID-19 spread are analyzed in relation to introduced quarantine measures. This kind of modeling can be used to select effective anti-pandemic programs. © 2023 Walter de Gruyter GmbH, Berlin/Boston 2023.

18.
Open Chemistry ; 21(1), 2023.
Article in English | Scopus | ID: covidwho-2296994

ABSTRACT

Carbon dioxide (CO2) rate within the atmosphere has been rising for decades due to human activities especially due to usage of fuel types such as coal, cement, flaring, gas, oil, etc. Especially in 2020, COVID-19 pandemic caused major economic, production, and energy crises all around the world. As a result of this situation, there was a sharp decrease in the global CO2 emissions depending on the fuel types used during this pandemic. The aim of this study was to explore the effects of "CO2 emissions due to the fuel types"on "percentage of deaths in total cases"attributed to the COVID-19 pandemic using generalized linear model and generalized linear mixed model (GLMM) approaches with inverse Gaussian and gamma distributions, and also to obtain global statistical inferences about 169 World Health Organization member countries that will disclose the impact of the CO2 emissions due to the fuel types during this pandemic. The response variable is taken as "percentage of deaths in total cases attributed to the COVID-19 pandemic"calculated as "(total deaths/total confirmed cases attributed to the COVID-19 pandemic until December 31, 2020)∗100."The explanatory variables are taken as "production-based emissions of CO2 from different fuel types,"measured in tonnes per person, which are "coal, cement, flaring, gas, and oil."As a result of this study, according to the goodness-of-fit test statistics, "GLMM approach with gamma distribution"called "gamma mixed regression model"is determined as the most appropriate statistical model for investigating the impact of CO2 emissions on the COVID-19 pandemic. As the main findings of this study, 1 t CO2 emissions belonging to the fuel types "cement, coal, flaring, gas, and oil"per person cause increase in deaths in total cases attributed to the COVID-19 pandemic by 2.8919, 2.6151, 2.5116, 2.5774, and 2.5640%, respectively. © 2023 the author(s), published by De Gruyter.

19.
Engineering Applications of Artificial Intelligence ; 123, 2023.
Article in English | Scopus | ID: covidwho-2295075

ABSTRACT

Intuitionistic fuzzy set (IFS) theory can be applied for multi-aspect systems due to its capability to address uncertainty and incomplete information in terms of membership and non-membership degrees. Unfortunately, classical Γ-structures cannot handle fuzzy and imprecise information in real problems. In fact, there is no rigorous base to practically express the effectiveness of multi-attribute systems in IFS environment. Here, we develop a generalized IFS with the notion of Γ-module called intuitionistic fuzzy Γ-submodule (IFΓM) to establish a novel "Global electronic (e)-Commerce (GeC) Theory”. To simplify the analysis of parameters, (α,β)-cut representation is proposed in terms of comprehensive distribution of fuzzy number for the classification of components. On the other hand, Cartesian product is implemented to correspond the elements. Substantial properties of IFΓM including (α,β)-cut, Cartesian product and t-intuitionistic fuzzy Γ-submodule (t-IFΓM) are characterized with illustrative examples to extend the framework of IFΓM, where (α,β)-cut and support t-IFΓM are verified to be Γ-submodules based on the properties of IFΓM. Through Γ-module homomorphism, image and inverse image, the parametric connections between (α,β)-cuts are systematically investigated. In addition, a mathematical relationship between the Cartesian product and (α,β)-cut is determined. The overlapping intersection of a collection of t-IFΓM is proved to be t-IFΓM, and the image and inverse image are preserved under Γ-module homomorphism. As global e-trades are increasingly expanding after the recent coronavirus disease 2019 (COVID-19) hit, with the growth of 26.7-trillion dollars, businesses are required to transform their traditional functional natures to online (or blended) strategies for cost efficiency and self-survival in the present competitive environment. Therefore, compared to recent studies on IFS in the context of Γ-structures, the main contribution of this study is to provide a theoretical basis for the establishment of a new GeC Theory through the developed IFΓM method and Γ-module M which targets the purchasing rate of customers through e-commerce companies. In the end, the performance of the proposed method in terms of upper and lower cut, t-intuitionistic fuzzy set, support and IFΓM model, is analyzed in the developed GeC Theory. The proposed GeC Theory is validated using real datasets of e-commerce mega companies, i.e., Amazon, Alibaba, eBay, Shopify. They are characterized based on the amount of online shopping by samples (individuals). Compared to the existing methods, the GeC approach is an effective IFS-based method for complex systems with uncertainty. © 2023 Elsevier Ltd

20.
Crit Care ; 27(1): 143, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2305266

ABSTRACT

BACKGROUND: Previous studies have demonstrated a beneficial effect of early use of corticosteroids in patients with COVID-19. This study aimed to compare hospitalized patients with COVID-19 who received short-course corticosteroid treatment with those who received prolonged-course corticosteroid treatment to determine whether prolonged use of corticosteroids improves clinical outcomes, including mortality. METHODS: This is a retrospective cohort study including adult patients with positive testing for Sars-CoV-2 hospitalized for more than 10 days. Data were obtained from electronic medical records. Patients were divided into two groups, according to the duration of treatment with corticosteroids: a short-course (10 days) and a prolonged-course (longer than 10 days) group. Inverse probability treatment weighting (IPTW) analysis was used to evaluate whether prolonged use of corticosteroids improved outcomes. The primary outcome was in-hospital mortality. Secondary outcomes were hospital infection and the association of different doses of corticosteroids with hospital mortality. Restricted cubic splines were used to assess the nonlinear association between mortality and dose and duration of corticosteroids use. RESULTS: We enrolled 1,539 patients with COVID-19. Among them, 1127 received corticosteroids for more than 10 days (prolonged-course group). The in-hospital mortality was higher in patients that received prolonged course corticosteroids (39.5% vs. 26%, p < 0.001). The IPTW revealed that prolonged use of corticosteroids significantly increased mortality [relative risk (RR) = 1.52, 95% confidence interval (95% CI): 1.24-1.89]. In comparison to short course treatment, the cubic spline analysis showed an inverted U-shaped curve for mortality, with the highest risk associated with the prolonged use at 30 days (RR = 1.50, 95% CI 1.21-1.78). CONCLUSIONS: Prolonged course of treatment with corticosteroids in hospitalized patients with COVID-19 was associated with higher mortality.


Subject(s)
COVID-19 , Adult , Humans , Retrospective Studies , SARS-CoV-2 , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacology , Probability
SELECTION OF CITATIONS
SEARCH DETAIL